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We consider the familiar antithesis between pure and applied mathematics as it
appears in statistics: the ‘pure’ theory of mathematical statistics on the one
hand and applied statistical methodology on the other. Three examples (de
Witt's study of annuities, the Delta Committee’'s work on the Dutch storm-flood
disaster of 1953, and modern developments in survival analysis) show that the

interplay is far more subtle than the facile distinction pure versus applied sug-
gests.

[his paper started life as an inaugural lecture at the University of Leiden. Thi

formal context explains both style and some of the content of the paper: de
Witt, one of a generation of outstanding Dutch mathematicians trained 1in
Leiden (together with Huygens and Hudde), was also an outstanding politician
and in fact now something of a Dutch national hero. The other ingredient is
the surprise of the author - a mathematical statistician - at being appointed to

a special chair in the applications of mathematics.

INTRODUCTION

I want to examine the classical antithesis between pure and applied mathemat-
ics, emphasising of course the position of statistics and statisticians. I'd like to
underline the existence of this antithesis, the fact that there can be a paradox
in putting mathematical statistics amongst the applications of mathematics, by
quoting the famous pure mathematician Paul Halmos [1] who said : "applied
mathematics is bad mathematics’. Such a statement coming from that corner
may not be surprising; but what to think of the fact that one of my colleagues
in mathematical statistics quoted it recently in his inaugural speech [2] without
any sign of condemnation?

Of course this is rather an exaggeration. One could deduce from this that
there are two easily discernable kinds of statisticians, while many of us can
behave differently on different occasions. Sometimes this results in a split per-
sonality, occasionally in an enriched one, but always a certain tension between

* The author was formerly head of the department of mathematical statistics, CWI.
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STATISTICS IN THE NEWS

We are confronted daily in the newspapers and on television with pronounce-
ments m which rightly or wrongly statistics are used. Statistics is used for
drawing conclusions from observations or data in situations in which chance or
accident played so big a role that an equivocal conclusion is not possible. It is
only possible to draw inexact conclusions. Statisticians are now able to charac-
terise and minimalise the level of uncertainty. (Today I leave out the important
sub-fields ‘descriptive statistics’ and ‘data-analysis’ in which one can or wants
to do without pronouncements about chance.) The fact that according to one
expert the Challenger disaster had a chance of one in every thousand launches
while according to another this chance was as big as one in twenty might have
something to do with the margins of uncertainty which are undoubtedly
present in these two statements. On the other hand I certainly don’t want to
suggest that in a situation of such complexity a solid statistical solution is pOS-
sible at all. One should not only have at one’s disposal the data relevant to the
disaster, but also a model that makes this relationship explicit and
quantifiable; the difference between the two statements may be due to the fact
that different models were used.

The importance of a model - a framework for thought if you hke - can also
be illustrated by the reports in the newspapers of the number of extra deaths
to be expected as a consequence of the accident in a nuclear reactor in Tsjer-
nobyl. This number has no meaning whatsoever or, to put 1t kindly, it can be
interpreted in many ways. Everyone happens to die exactly once, disaster or
no disaster. Does one mean really: an additional number of deaths within a
certain (relatively short) period? Or does this number apply to the total
number of people who die earlier than would have been the case had the
accident not happened? And wouldn’t it be relevant in that case how much
sooner that would be; i.e. wouldn’t the ‘amount of lost man-years’ be a more
sensible quantity to use?

I hope to make clear to you later that statistics cannot only be used to draw
some conclusions from a collection of data; it also has a much more important
use, because it enables us by employing mathematical models to find out
whether the available data really are relevant to answer the questions put to

the statistician. As often as not this is not the case unless we add all kinds of
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In Leiden classical mathem aﬂcs not much changed since Euchd, was prac-
tised 1n the classmal way. Prince Maurts altered this in 1600 by founding a
chair in app].led 1T} par ticular mul ta.ry mathematics. A novelty concerning
this private chair was that lectures had to be 1n Dutch instead of the then

in. In 1615 Frans van Schooten was appointed to this chair. When
he died his son, also named Frans, succeeded him; this younger Van Schooten
now was an ardent fo llower and p0pul arizer of Descartes. Around this time
Descartes himself stayed some years in Leiden.

[he influence of the younger van Schooten shows itself clearly in the work
of three of his pupils: Johan de Witt, Johannes Hudde, and Chrnistiaan
Huygens. The contributions to probability-theory of Huygens are most well-
known - his book De Ratiociniis in Ludu Aleae published 1n 1657 was the first
and also, thanks to the wide distribution brought about by Van Schooten, dur-
ing fifty years the standard text on probab: ty—-theory Today however, I'd like
to tell you something about the work of De Wi . He applied statistics for
the first time in politics. This also made him the first person to take
probability-theory out of the domain of games of chance. (De Witt’'s main con-
tribution to mathematics was something entirely different, namely a treatise on
conic sections a la analytic geometry.)

In 1671 De Witt, as Grandpensionary, considered it his task to collect funds
quickly to defend the Republic in the impending attack from other major
countries (England, France, and the bishoprics of Munster and Cologne). In
those days, when a small public service offered little opportunity to economize,
a common way of raising money was to sell annuities: for a certain price one
could buy a fixed annual income or interest for a certain person; this interest
was paid as long as that person lived. The buyer usually nominated a younger
member of his family. The current purchase-price was fourteen times the
amount one got paid annually, independently of the age of the nominee.

Inflation was four percent per annum. If one knows the probability

EuI‘Ope all mech %
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One may wonder if the members of the States Gener al weren’t dazzled
much mathematics; all the more so because at close reading of

ne report some
strange incongruities come to light. The factors one-an alf, two and three

are derived from an argument concerming conditional risks: for a person aged
58 the death-risk or force of mortality in the coming year would be one-and-
a-half times as big as that for a person aged 40.

0. However, the calculations are
concerned with unconditional chances: i.e. the chance of a three-year-old dymg
in his 58th year would be one-and-a-half times the chance of him dying in his
40th year. What’s more, the factors in the calculations have suddenly changed
Into two-thirds, a half and one third. This means they’re the reciprocals of the
~ongimal ones! For a long time these ‘minor flaws’ went unnoticed. In a later
correspondence with Hudde, then town-mayor of Amsterdam, who analysed
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In the long run this work of De Witt hardly influenced the evolution of
statistics. During the decades after his discourse was published the mathemati-
cians of Europe were busy developing the differential and integral calculus. De
Witt’s solution to the problem of annuities fell into oblivion. It was only
rediscovered two centuries later, during which many completely incorrect solu-
tions were used. Probability-theory and statistics only flourished in our cen-
tury, when they could take root in much more mature mathematics and be
stimulated by prestigious scientific applications.

For the modern pursuit of science it’s difficult to learn lessons from such a
history. We can appreciate how De Witt apphed with flourish the abstract
theory of games of chance, which had only just been developed, to a political
matter of great urgency. The fact that his analysis was not perfect may be
defended in the light of an insufficient mathematical language and incomplete
conceptual apparatus. Whether he himself fell victim to this opportunity for
confusion or whether he used it for political purposes, I happily leave to his-
torians to decide.

SECOND CHANCE: HOW HIGH ARE THE DYKES?

Let’s continue with a more contemporary example: the flooding of the South-
West of Holland in 1953. On account of this disaster the Delta Committee was
formed. The Mathematical Centre in Amsterdam was assigned the task of
determining by a statistical analysis of the levels of the high tides over the past
seventy years how high the seadikes should be - the ‘basispeil’ (basic level) - to
make the chance of inundation one in ten thousand per annum, or, to put it
differently and make the chance appear less negligible, one-hundredth 1n every
hundred years. Since a statistical analysis in those days was literally pure
brain- and handwork, one had to be very sparing and resourceful 1n construct-
ing and analysing different models. By selecting for the analysis one high tide
level for every deprcssmn occurring in the observational period, one could rule

out mutual dependence in the levels of high tides in close succession. Choosing
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these dep hat subjective
business. After a thorough analysis it was concluded that the observations were
essentially exponentially distributed: i.e. given the fact that the waterlevel
meters, the chance that it rises one more centimeter stays the same
the value of x. This par ticular chan CE, and the chance a d epression
stimated from the observations. Together they determine the

[hese calculations resulted in a ‘basispeil’ of 5.1 meters, a
meters politicians and engineers had come up

unt, a °‘safe’ basic level

Ormy mee innenhof in the Ha gue the
mathematicians - D. van Dantzig and J. Hemelrijk - managed to have the ori-
ginal 4.5 meters changed into 5 meters. This greatly surprised many members

I the committee, who wondered what on earth these statisticians thought they
were doin g.

At the present time this investigation is being repeated [4]. It is helped by a
now thirty years longer series of observations, much more refined methods of
analysis, and supported by modern computer facilities. In particular - partly
inspired by such applications - an extensive and more elegant theory has
evolved concerning extremes in a series of mutually dependent random quanti-
ties, i.e. a stochastic process. In an interim report the scientists use a more
complicated model with an extra parameter; as a result of this the estimated
basispeil turns out to be much lower - 4.2 meters only (the chances of increases
drop with the level already attained, thus makin g very extreme waterlevels
more unhkely). By including this extra parameter however, the possible estima-
tion error has grown a lot (and a safe ‘basispeil’ stays the same). This may

ven lead to the following final conclusion: such a demandin g extrapolation
can’t be made from the available data.

ly turd and somewhat more detailed example concerns an area in modern
stasups which I myself have been involved, namely so-called survival
analysis. This term - a eufemism as you’ll realise later - is the collective name
| methods that can be used for the analysis of observed lengths of
__ ¢ begin of a medical treatment and the failing of that
reatment; sgh‘ data are collected for instance to compare a new treatment
WILD an old chmical treatment of certain kinds of cancer. One should think of a
clinical L In 2 hospital in which during say five years maybe one to two
undred new patents suffering from a certain illness are admitted and treated.
every one of these patients chance is made to decide whether they’ll be
calcd according to the new or the old therapy As this eliminates the effects
, One is thu§ enabled to make as unbiased a comparison as pos-

important patient-
P4 yes/no variable, but the time-span between
oent to the end of remission, ie. to recurrence of the

O be compared is not a
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m sample has been taken, is a standard exercise for an
tics, be it for physicists, psychologists or whatever, will b
with the parametric ‘Student’s t-test’ and its non-parametric counterp
“two-san ple test’ of Wilcoxon. lhe qua lifications param etric’
para: netric’ pO nt to the fact th first test rests on heavy assumptions of
normal distributions in the two populations to be compared, i.e. distributions
of a specified shape so that only two numerical ameters (mean and vari-
ance) suffice to fix them completely. Th wever is correct
here, usually non-parametric 1 ed. One wants to draw as convinc-
ing as possible a conclusion that the new treatment is better or worse as the
case may be.

Thus far this does not seem to offer the statistician a new challenge. What I
haven’t mentioned yet is the complicating phenomenom called censoring.
Obviously one wants to make a decision about the relative merit of each treat-
ment as soon as possible. This implies that at the point in time at which one
has to analyse the data, quite a number of patients will still be in remission;
the better the new treatment the larger that number will be. It’s also possible
that patients who are in remission withdraw from the trial or die from a totally
independent cause. The observation of the survival time of these patients 1s
censored. At a certain (observed) moment in time a veil is drawn over their
further history.

Just leaving all these cases out of one’s analysis is inefficient at best, at worst
completely misleading. It's most important to include all data, censored or not,
recognising the difterence.

Initially - ’m thinking of the fifties here - many ad hoc adaptations of the
classical statistical methods of analysis mentioned above were devised. The
only positive thing about these methods was that they supplied something that
could be used. A breakthrough was brought about only by essentially new
methods that fully recognised the dynamics of the situation. I must stress
immediately that it was applied statisticians, N. Mantel and W. Haenszel 1n
particular, using elementary mathematics, but with a strong and healthy intui-
tion, who introduced these new methods [5].

The basic idea is this. It’s no use comparing the number of patients In rem -
ission (surviving) in the two groups at a certain length of time after admissior:

for these numbers not only result from the ending of the remission, but als..
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I have to go mto some technical details now to show that the solution of
Mantel and Haenszel entails a few quite unusual elements. Consider a time-
interval during which a certain patient leaves remission which is so small that
in this interval this is the only event occuring. Classify all patients who are
present at the beginning of the interval in a two way table: per row, treatment
group 1 or 2; per column, does or does not leave remission in this period. Cal-
culate the (non squared) contribution of one of the four cells to the well-
known chi-square test-statistic of independence (observed minus expected
number), add these contributions over all the available points in time, square,
divide by the sum of the expected numbers, and compare with the chi-square
distribution with one degree of freedom.

To anyone acquainted with statistical theory this procedure makes a mysteri-
ous impression, however healthy the initial philosophy was. In each of our two
by two tables one column has a total of one - one person leaving remission.
We learn however the practical rule that the asymptotics - the ‘large sample
approximation’ - of the chi-square test-statistic only works if at least five indi-
viduals per cell occur under the hypothesis of independence of treatment-group
and the leaving of remission. Another objection is the fact that all these com-

parisons are interdependent; the more patients leave remission now, the fewer
patients are left to compare at a later point in time.

Even though people weren’t entirely happy with the justification of these
methods, they put up with them, especially after from completely different, but
just as bizarre reasonings (Fisher score test based on the marginal density of
the rank numbers of the observations in an imaginary but intuitively compar-
able experimental design [6]) the same solution amazingly emerged. To tackle
all kinds of variations on the basic problem described here, more and more
refined methods of analysis were devised via ever more daring heuristics and
intuition. The climax was D. R. Cox’s regression model [7], introduced in 1972,
and for which he only three years later (informally) pin-pointed the underlying
idea. All this took place mainly in the medical-statistical and applied statistical
specialist literature. Mathematical statisticians on the whole either ignored all
this or viewed it with suspicion, though some of them studied the new statisti-
cal methods by using classical mathematical-statistical techniques. In a classic
case [8] they discovered after gigantic calculations during which huge formulas
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tic processes (‘one bloody thing after anoth glish statisti-
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i th discovered th

processes, as used in statistical applications in demography and pervading

modern probability theory. In Berkeley he came into contact with a group of
mathematicians, the French

men Bremaud and Jacod among others, who were
busy applying a new theory of stochastic integrals - a stochastic infinitesimal
calculus - to problems of controlling and filtering counting processes. It had
become evident that the idea of the time-dependent, conditional intensity of
new events in a random process was closely connected with the basic 1dea in
this theory: the Doob-Meyer decomposition of a nice stochastic process into a
systematic (predictable) part and a so-called martingale. Aalen recognised
these same elements in survival analysis and discovered also that all kinds of
statistically interesting quantities could be described in a simple way in terms
of this theory, i.e. as stochastic integrals of predictable processes with respect
to martingales.

I’ll attempt to clarify these terms somewhat. The term martingale stems from
Monte Carlo: it is a gambling system in which one supposes that if in roulette
the ball has fallen on red in less than half of the rounds, the chances that this
will happen in the next rounds will be bigger. In probability theory however a
martingale is the abstraction of the cumulative gain (as function of time) in a
fair game of chance. The average of this is zero, independent of gambling sys-
tem or rule for setting stakes. In our example the connection is that if the two
treatments are equally good, and if censoring is independent of survival, the
result at each point in time of who, if anyone, leaves remission, is pure chance
just as in roulette. The test-statistic of Mantel and Haenszel is the final gain 1n
this game when using a certain rule of setting stakes. If one treatment is better

than the other, it isn’t a fair game and (on average) a cumulative gain (or loss)
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[hrough the years more theory has been added that
immediately be used in the applied field. H
the martingale central limit theorems of
members of the Russian school around A.N. Shiryayev. With these one can
give conditions under which all kinds of statistical quantities have an approxi-
mately normal distribution. The use of these theorems belongs to th
indispensable part of daily statistical practice (in particular the application of
the method of Mantel and Haenszel).

[.ooking back it is not difficult to find all kinds of forerunners and indica-
tions of this theory in the applied literature. An interesting and very explicit
example 1s offered by a paper [10] in a famous English biostatistical journal in
which the authors left out a justification using martingal theory because this
according to the editors would have been too difficult for the ordinary readers,
who of course were mainly applied statisticians. This was a missed chance
indeed. At the same time this paper also gives an example of the derailing of
healthy practical intuition - I mention this to stress the fact that beautiful but
difficult mathematics 1s not just a game, but on the contrary, absolutely vital to
supply clarity, precision, and the firm base for the next soaring of intuition.
[he application of this theory of martingals, counting processes and stochas-
tic integrals has, via a number of brilliant successes, led to a uniform treatment
of a whole range of methods in survi

ival analysis and to the clear demarcation
of their applicability. It also led to a pruning of the uncontrolled growth of
partially useful, partially barren concepts and theories. Now one can with the
greatest ease study new methods in an existing theoretical framework; it is also
possible to transplant ideas from the limited area of survival-analysis to all
kinds of different situations where the intensity of events in time is studied. I
could give examples from demography, epidemiology, ethology, psychology,
and econometrics. This baroque and inaccessible abstract theory has now
become an extremely strong and intuitively quite manageable calculus.

I’d like to make some additional remarks concerning this last example.
Firstly, all thus activity has stimulated other areas within statistics very much
indeed. Thus the applied field offered a number of examples of semiparametric
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fact that in these disciplines one is more often than not compelled to work
with observational material that is retrospective in character: collected after
the events, and depending on the random developments one actuall y studies
included in the sample or not, with the resulting consequences for bias.

| hese developments also had their effect on the statistical dition in cer-
tain countries, 1n particular France and the Soviet Union. These countries have
very strong probabilistic schools, but are relatively weak as far as applied
statistics are concerned. These new possibilities to apply their ‘own’ pure
mathematics caused a renewed interest in applied statistics. In both countries
mathematicians of stature became involved in it.

Of course it 1s approprate to say something here about the consequences for
cancer-research, which after all was the subject of this example. We must
recognise the fact that statistics plays such a vital role here precisely because of
the failure to make a real medical breakthrough. It i1s indeed a fact that statis-
tics 1s at its best under circumstances like that. For the time being small
improvements in ‘average’ survival time have to be traced and proven bit by
bit with great difficulty. This way differences in optimal treatment for different
patients have been established. It is true that other factors, ‘quality of hfe’ for
instance sometimes undo these small gains.

I'd like to make a second remark to give you a proper perspective. Let’s ask
ourselves: what did the application of the martingale theory in this case really
consist of? What was applied? Apart from the modelling of certain phenomena,
and the motivation of certain methods of data analysis (both certainly rather
important), this beautiful mathematics mainly suppled approximations the
accuracy of which cannot (that is, not yet) be determined from the theory: the
fact for instance that the test-statistic is asymptotically normally distributed,
and in a certain sense asymptotically optimal. I don’t want to suggest that such
results can’t be applied, on the contrary; but we must realise that this applica-
tion isn’t properly completed yet. In all situations of some complexity we’ll
always have to content ourselves with approximate solutions to the problems
really posed. The theory has to be supplemented with empirical research and

practical experience.
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that a definite conclusion can’t be drawn.

Let me finally quote Dirichlet [11], who in 1852 thought the direction of the
then modem analysas to be: ‘the supplantmg of calculations by i1deas’. In my

uld be the task of mathematical statistics even now. The ds
tinction betwecn pure and applied mathematics with which I started my
discourse, can instinctively be characterised by beautiful ideas on the one
hand, and possibly usefull but dull and endless calculations on the other. I
hope to have shown you that this distinction is misplaced. The point 1s to find
in apphied mathematics the ideas that make the calculations selfevident and
clear, and to shift the limits of ability and knowledge as far as possible.
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